Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
1.
PLoS One ; 19(4): e0298778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568911

RESUMO

BACKGROUND: Previous observational studies have reported an association between Sjögren's syndrome (SS) and an increased risk of Parkinson's Disease (PD). However, the causal relationship between these conditions remains unclear. The objective of this study was to investigate the causal impact of SS on the risk of developing PD, utilizing the Mendelian randomization (MR) approach. METHODS: We conducted a bidirectional MR analysis using publicly available genome-wide association studies (GWAS) data. The primary analysis utilized the inverse-variance weighted (IVW) method. Complementary methods, such as MR-Egger regression, weighted mode, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO), were utilized to identify and correct for the presence of horizontal pleiotropy. RESULTS: The IVW MR analysis revealed no significant association between SS and PD (IVW: OR = 1.00, 95% CI = 0.94-1.07, P = 0.95). Likewise, the reverse MR analysis did not identify any significant causal relationship between PD and SS (IVW: OR = 0.98, 95% CI = 0.85-1.12, P = 0.73). The results from MR-Egger regression, weighted median, and weighted mode approaches were consistent with the IVW method. Sensitivity analyses suggested that horizontal pleiotropy is unlikely to introduce bias to the causal estimates. CONCLUSION: This study does not provide evidence to support the assertion that SS has a conclusive impact on the risk of PD, which contradicts numerous existing observational reports. Further investigation is necessary to determine the possible mechanisms behind the associations observed in these observational studies.


Assuntos
Doença de Parkinson , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Parkinson/genética
2.
Pest Manag Sci ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629775

RESUMO

BACKGROUND: Saliva has a crucial role in determining the compatibility between piercing-sucking insects and their hosts. The brown planthopper (BPH) Nilaparvata lugens, a notorious pest of rice in East and Southeast Asia, secretes gelling and watery saliva when feeding on rice sap. Nlsalivap-5 (NlSP5) and Nlsalivap-7 (NlSP7) were identified as potential planthopper-specific gelling saliva components, but their biological functions remain unknown. RESULTS: Here, we showed that NlSP5 and NlSP7 were biasedly expressed in the salivary glands of BPHs by transcriptomic analyses. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system, we constructed NlSP5 and NlSP7 homozygous mutants (NlSP5-/- and NlSP7-/-). Electrical penetration graph assay showed that NlSP5-/- and NlSP7-/- mutants exhibited abnormal probing and feeding behaviors. Bioassays revealed that the loss-of-function of NlSP5 and NlSP7 significantly reduced the fitness of BPHs, with extended developmental duration, shortened lifespan, reduced weight, and impaired fecundity and hatching rates. CONCLUSION: These findings deepen our understanding of the BPH-host interaction and may provide potential targets for the management of rice planthoppers. This article is protected by copyright. All rights reserved.

3.
Biomed Environ Sci ; 37(3): 266-277, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582991

RESUMO

Objective: The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area, namely, Qunlu Practice Base, Peach Blossom Garden, and Huangtong Animal Husbandry, and whether vectors carry any bacterial pathogens that may cause diseases to humans, to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods: Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit (OPU) analysis, we characterized the species-level microbial community structure of two important vector species, biting midges and ticks, including 33 arthropod samples comprising 3,885 individuals, collected around Poyang Lake. Results: A total of 662 OPUs were classified in biting midges, including 195 known species and 373 potentially new species, and 618 OPUs were classified in ticks, including 217 known species and 326 potentially new species. Surprisingly, OPUs with potentially pathogenicity were detected in both arthropod vectors, with 66 known species of biting midges reported to carry potential pathogens, including Asaia lannensis and Rickettsia bellii, compared to 50 in ticks, such as Acinetobacter lwoffii and Staphylococcus sciuri. We found that Proteobacteria was the most dominant group in both midges and ticks. Furthermore, the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria. Pantoea sp7 was predominant in biting midges, while Coxiella sp1 was enriched in ticks. Meanwhile, Coxiella spp., which may be essential for the survival of Haemaphysalis longicornis Neumann, were detected in all tick samples. The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion: Biting midges and ticks carry large numbers of known and potentially novel bacteria, and carry a wide range of potentially pathogenic bacteria, which may pose a risk of infection to humans and animals. The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.


Assuntos
Ceratopogonidae , Microbiota , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ceratopogonidae/genética , Filogenia , RNA Ribossômico 16S/genética , Estudos Prospectivos , Coxiella/genética
4.
Eur J Med Chem ; 270: 116390, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604096

RESUMO

Protein tyrosine phosphatases PTPN2 and PTPN1 (also known as PTP1B) have been implicated in a number of intracellular signaling pathways of immune cells. The inhibition of PTPN2 and PTPN1 has emerged as an attractive approach to sensitize T cell anti-tumor immunity. Two small molecule inhibitors have been entered the clinic. Here we report the design and development of compound 4, a novel small molecule PTPN2/N1 inhibitor demonstrating nanomolar inhibitory potency, good in vivo oral bioavailability, and robust in vivo antitumor efficacy.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais
5.
Br J Clin Pharmacol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570184

RESUMO

AIMS: Isoniazid (INH) has been used as a first-line drug to treat tuberculosis (TB) for more than 50 years. However, large interindividual variability was found in its pharmacokinetics, and effects of nonadherence to INH treatment and corresponding remedy regime remain unclear. This study aimed to develop a population pharmacokinetic (PPK) model of INH in Chinese patients with TB to provide model-informed precision dosing and explore appropriate remedial dosing regimens for nonadherent patients. METHODS: In total, 1012 INH observations from 736 TB patients were included. A nonlinear mixed-effects modelling was used to analyse the PPK of INH. Using Monte Carlo simulations to determine optimal dosage regimens and design remedial dosing regimens. RESULTS: A 2-compartmental model, including first-order absorption and elimination with allometric scaling, was found to best describe the PK characteristics of INH. A mixture model was used to characterize dual rates of INH elimination. Estimates of apparent clearance in fast and slow eliminators were 28.0 and 11.2 L/h, respectively. The proportion of fast eliminators in the population was estimated to be 40.5%. Monte Carlo simulations determined optimal dosage regimens for slow and fast eliminators with different body weight. For remedial dosing regimens, the missed dose should be taken as soon as possible when the delay does not exceed 12 h, and an additional dose is not needed. delay for an INH dose exceeds 12 h, the patient only needs to take the next single dose normally. CONCLUSION: PPK modelling and simulation provide valid evidence on the precision dosing and remedial dosing regimen of INH.

6.
Cancer Lett ; 590: 216826, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574881

RESUMO

Ferroptosis, an iron-dependent regulated cell death caused by excessive lipid peroxide accumulation, has emerged as a promising therapeutic target in various cancers, including non-small cell lung cancer (NSCLC). In this study, we identified the long non-coding RNA RGMB-AS1 as a key regulator of ferroptosis in NSCLC. Mechanistically, RGMB-AS1 interacted with heme oxygenase 1 (HMOX1) and prevented its ubiquitination by the E3 ligase TRC8, leading to increased HMOX1 stability and enhanced ferroptosis. Additionally, RGMB-AS1 bound to the 82-87 amino acid region of N-alpha-acetyltransferase 10 (NAA10), stimulating its acetyltransferase activity and promoting the conversion of acetyl-CoA to HMG-CoA, further contributing to ferroptosis. The RGMB-AS1-HMOX1 and RGMB-AS1-NAA10 axes synergistically inhibited NSCLC growth both in vitro and in vivo. Clinically, low RGMB-AS1 expression was associated with advanced tumor stage and poor overall survival in NSCLC patients. Furthermore, adeno-associated virus-mediated RGMB-AS1 overexpression significantly suppressed tumor growth in mouse xenograft models. Our findings uncover a novel lncRNA-mediated regulatory mechanism of ferroptosis and highlight the potential of RGMB-AS1 as a prognostic biomarker and therapeutic target in NSCLC.

8.
Nanomaterials (Basel) ; 14(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607101

RESUMO

Surface-enhanced Raman scattering (SERS), as one of the most powerful analytical methods, undertakes important inspection tasks in various fields. Generally, the performance of an SERS-active substrate relies heavily on its structure, which makes it difficult to integrate multiple-functional detectability on the same substrate. To address this problem, here we designed and constructed a film of graphene/Au nanoparticles (G/Au film) through a simple method, which can be conveniently transferred to different substrates to form various composite SERS substrates subsequently. By means of the combination of the electromagnetic enhancement mechanism (EM) and the chemical enhancement mechanism (CM) of this structure, the film realized good SERS performance experimentally, with the enhancement factor (EF) approaching ca. 1.40 × 105. In addition, the G/Au film had high mechanical strength and had large specific surface area and good biocompatibility that is beneficial for Raman detection. By further transferring the film to an Ag/Si composite substrate and PDMS flexible film, it showed enhanced sensitivity and in situ detectability, respectively, indicating high compatibility and promising prospect in Raman detection.

9.
iScience ; 27(4): 109545, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617557

RESUMO

Dysregulated macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes underlies impaired cutaneous wound healing. This study reveals Vγ4+ γδ T cells spatiotemporally calibrate macrophage trajectories during skin repair via sophisticated interferon-γ (IFN-γ) conditioning across multiple interconnected tissues. Locally within wound beds, infiltrating Vγ4+ γδ T cells directly potentiate M1 activation and suppress M2 polarization thereby prolonging local inflammation. In draining lymph nodes, infiltrated Vγ4+ γδ T cells expand populations of IFN-γ-competent lymphocytes which disseminate systemically and infiltrate into wound tissues, further enforcing M1 macrophages programming. Moreover, Vγ4+γδ T cells flushed into bone marrow stimulate increased IFN-γ production, which elevates the output of pro-inflammatory Ly6C+monocytes. Mobilization of these monocytes continually replenishes the M1 macrophage pool in wounds, preventing phenotypic conversion to M2 activation. Thus, multi-axis coordination of macrophage activation trajectories by trafficking Vγ4+ γδ T cells provides a sophisticated immunological mechanism regulating inflammation timing and resolution during skin repair.

10.
Heliyon ; 10(8): e29040, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638987

RESUMO

Many studies have examined the influence of digital technologies, such as robots and artificial intelligence, on enterprise labor, but few have investigated the underlying mechanisms and impact paths of digital empowerment on labor employment. Therefore, this study uses data on manufacturing enterprises listed on China's Shanghai and Shenzhen A-share markets from 2011 to 2020, and applies a panel fixed effect model to test the relationship between digital empowerment and labor employment, and the mechanisms underlying this relationship. We find that digital empowerment increases labor employment. However, the effects are heterogeneous: firms with better corporate governance, more competitive industry, and less favorable regional business environments are more motivated to optimize the structure of their labor resources. Through robustness test and mediation effect model test, we find that digital empowerment can improve enterprise human capital by increasing economies scale and managerial efficiency, especially the employment of R&D and innovation personnel and management personnel; it can also affect the amount of human capital by improving total factor productivity.

11.
RSC Adv ; 14(16): 11323-11333, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38595724

RESUMO

Silicon-carbon composites have been recognized as some of the most promising anode candidates for advancing new-generation lithium-ion batteries (LIBs). The development of high-efficiency silicon/graphene anodes through a simple and cost-effective preparation route is significant. Herein, by using micron silicon as raw material, we designed a mesoporous composite of silicon/alumina/reduced graphene oxide (Si/Al2O3/RGO) via a two-step ball milling combined annealing process. Commercial Al2O3 nanoparticles are introduced as an interlayer due to the toughening effect, while RGO nanosheets serve as a conductive and elastic coating to protect active submicron silicon particles during lithium alloying/dealloying reactions. Owing to the rational porous structure and dual protection strategy, the core/shell structured Si/Al2O3/RGO composite is efficient for Li+ storage and demonstrates improved electrical conductivity, accelerated charge transfer and electrolyte diffusion, and especially high structural stability upon charge/discharge cycling. As a consequence, Si/Al2O3/RGO yields a high discharge capacity of 852 mA h g-1 under a current density of 500 mA g-1 even after 200 cycles, exhibiting a high capacity retention of ∼85%. Besides, Si/Al2O3/RGO achieves excellent cycling reversibility and superb high-rate capability with a stable specific capacity of 405 mA h g-1 at 3000 mA g-1. Results demonstrate that the Al2O3 interlayer is synergistic with the indispensable RGO nanosheet shells, affording more buffer space for silicon cores to alleviate the mechanical expansion and thus stabilizing active silicon species during charge/discharge cycles. This work provides an alternative low-cost approach to achieving high-capacity silicon/carbon composites for high-performance LIBs.

12.
Gen Psychiatr ; 37(2): e101281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481577

RESUMO

Background: The alexithymia trait is of high clinical interest. The Perth Alexithymia Questionnaire (PAQ) was recently developed to enable detailed facet-level and valence-specific assessments of alexithymia. Aims: In this paper, we introduce the first Chinese version of the PAQ and examine its psychometric properties and clinical applications. Methods: In Study 1, the PAQ was administered to 990 Chinese participants. We examined its factor structure, internal consistency, test-retest reliability, as well as convergent, concurrent and discriminant validity. In Study 2, four groups, including a major depressive disorder (MDD) group (n=50), a matched healthy control group for MDD (n=50), a subclinical depression group (n=50) and a matched healthy control group for subclinical depression (n=50), were recruited. Group comparisons were conducted to assess the clinical relevance of the PAQ. Results: In Study 1, the intended five-factor structure of the PAQ was found to fit the data well. The PAQ showed good internal consistency and test-retest reliability, as well as good convergent, concurrent and discriminant validity. In Study 2, the PAQ was able to successfully distinguish the MDD group and the subclinical depression group from their matched healthy controls. Conclusions: The Chinese version of the PAQ is a valid and reliable instrument for comprehensively assessing alexithymia in the general population and adults with clinical/subclinical depression.

13.
Angew Chem Int Ed Engl ; : e202403022, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485698

RESUMO

Integrating solar energy into rechargeable battery systems represents a significant advancement towards sustainable energy storage solutions. Herein, we propose a win-win solution to reduce the shuttle effect of polysulfide and improve the photocorrosion stability of CdS, thereby enhancing the energy conversion efficiency of rGO/CdS-based photorechargeable integrated lithium-sulfur batteries (PRLSBs). Experimental results show that CdS can effectively anchor polysulfide under sunlight irradiation for 20 minutes. Under a high current density (1 C), the discharge-specific capacity of the PRLSBs increased to 971.30 mAh g-1, which is 113.3 % enhancement compared to that of under dark condition (857.49 mAh g-1). Remarkably, without an electrical power supply, the PRLSBs can maintain a 21 hours discharge process following merely 1.5 hours of light irradiation, achieving a breakthrough solar-to-electrical energy conversion efficiency of up to 5.04 %. Ex situ X-ray photoelectron spectroscopy (XPS) and in situ Raman analysis corroborate the effectiveness of this complementary weakness approach in bolstering redox kinetics and curtailing polysulfide dissolution in PRLSBs. This work showcases a feasible strategy to develop PRLSBs with potential dual-functional metal sulfide photoelectrodes, which will be of great interest in future-oriented off-grid photocell systems.

14.
Bioorg Chem ; 146: 107285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547721

RESUMO

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Assuntos
Quinases Ciclina-Dependentes , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Quinase 2 Dependente de Ciclina/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Descoberta de Drogas
15.
Adv Mater ; : e2313513, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461147

RESUMO

The development of high-density and closely spaced frustrated Lewis pairs (FLPs) is crucial for enhancing catalyst activity and accelerating reaction rates. However, constructing efficient FLPs by breaking classical Lewis bonds poses a significant challenge. Here, this work has made a pivotal discovery regarding the Jahn-Teller effect during the formation of grain boundaries in carbon-encapsulated Ni/NiOx (Ni/NiOx @C). This effect facilitates the formation of high-density O (VO ) and Ni (VNi ) vacancy sites with different charge polarities, specifically FLP-VO -C basic sites and FLP-VNi -C acidic sites. The synergistic interaction between FLP-VO -C and FLP-VNi -C sites not only reduces energy barriers for water adsorption and splitting, but also induces a strong photothermal effect. This mutually reinforcing effect contributes to the exceptional performance of Ni/NiOx @C as a cocatalyst in photothermal-assisted photocatalytic hydrogen production. Notably, the Ni/NiOx @C/g-C3 N4 (NOCC) composite photocatalyst exhibits remarkable hydrogen production activity with a rate of 10.7 mmol g-1 h-1 , surpassing that of the Pt cocatalyst by 1.76 times. Moreover, the NOCC achieves an impressive apparent quantum yield of 40.78% at a wavelength of 380 nm. This work paves the way for designing novel defect-state multiphase cocatalysts with high-density and adjacent FLP sites, which hold promise for enhancing various catalytic reactions.

16.
Front Immunol ; 15: 1330560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482004

RESUMO

Objective: Systemic sclerosis(SSc) remains unclear, studies suggest that inflammation may be linked to its pathogenesis. Hence, we conducted a bidirectional Mendelian randomization (MR) analysis to evaluate the association between cytokine and growth factor cycling levels and the risk of SSc onset. Methods: In our study, the instrumental variables(IVs) for circulating cytokines were sourced from the genome-wide association study (GWAS) dataset of 8293 Finnish individuals. The SSc data comprised 302 cases and 213145 controls, and was included in the GWAS dataset. We employed four methods for the MR analysis: MR Egger, Inverse variance weighted (IVW), Weighted medium, and Weighted Mode, with IVW being the primary analytical method. Sensitivity analyses were performed using heterogeneity testing, horizontal pleiotropy testing, and the Leave One Out (LOO) method. We also conducted a reverse MR analysis to determine any reverse causal relationship between SSc and circulating cytokines. Results: After Bonferroni correction, MR analysis revealed that the Interleukin-5 (IL-5) cycle level was associated with a reduced risk of SSc [odds ratio (OR)=0.48,95% confidence interval (CI): 0.27-0.84, P=0.01]. It also indicated that the Stem cell growth factor beta (SCGF-ß) cycling level might elevate the risk of SSc (OR = 1.36, 95% CI: 1.01-1.83, P = 0.04). However, the reverse MR analysis did not establish a causal relationship between SSc and circulating cytokine levels. Additionally, sensitivity analysis outcomes affirm the reliability of our results. Conclusion: Our MR study suggests potential causal relationships between IL-5, SCGF-ß, and the risk of SSc. Further research is essential to determine how IL-5 and SCGF-ß influence the development of SSc.


Assuntos
Citocinas , Escleroderma Sistêmico , Humanos , Estudo de Associação Genômica Ampla , Interleucina-5 , Reprodutibilidade dos Testes , Escleroderma Sistêmico/genética
17.
Brain Imaging Behav ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38337128

RESUMO

To investigate brain network centrality and connectivity alterations in different Parkinson's disease (PD) clinical subtypes using resting-state functional magnetic resonance imaging (RS-fMRI), and to explore the correlation between baseline connectivity changes and the clinical progression. Ninety-two PD patients were enrolled at baseline, alongside 38 age- and sex-matched healthy controls. Of these, 85 PD patients underwent longitudinal assessments with a mean of 2.75 ± 0.59 years. Two-step cluster analysis integrating comprehensive motor and non-motor manifestations was performed to define PD subtypes. Degree centrality (DC) and secondary seed-based functional connectivity (FC) were applied to identify brain network centrality and connectivity changes among groups. Regression analysis was used to explore the correlation between baseline connectivity changes and clinical progression. Cluster analysis identified two main PD subtypes: mild PD and moderate PD. Two different subtypes within the mild PD were further identified: mild motor-predominant PD and mild-diffuse PD. Accordingly, the disrupted DC and seed-based FC in the left inferior frontal orbital gyrus and left superior occipital gyrus were severe in moderate PD. The DC and seed-based FC alterations in the right gyrus rectus and right postcentral gyrus were more severe in mild-diffuse PD than in mild motor-predominant PD. Moreover, disrupted DC were associated with clinical manifestations at baseline in patients with PD and predicted motor aspects progression over time. Our study suggested that brain network centrality and connectivity changes were different among PD subtypes. RS-fMRI holds promise to provide an objective assessment of subtype-related connectivity changes and predict disease progression in PD.

18.
Bioorg Med Chem ; 100: 117633, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342078

RESUMO

The methionine adenosyltransferase MAT2A catalyzes the synthesis ofthe methyl donor S-adenosylmethionine (SAM) and thereby regulates critical aspects of metabolism and transcription. Aberrant MAT2A function can lead to metabolic and transcriptional reprogramming of cancer cells, and MAT2A has been shown to promote survival of MTAP-deficient tumors, a genetic alteration that occurs in âˆ¼ 13 % of all tumors. Thus, MAT2A holds great promise as a novel anticancer target. Here, we report a novel series of MAT2A inhibitors generated by a fragment growing approach from AZ-28, a low-molecular weight MAT2A inhibitor with promising pre-clinical properties. X-ray co-crystal structure revealed that compound 7 fully occupies the allosteric pocket of MAT2A as a single molecule mimicking MAT2B. By introducing additional backbone interactions and rigidifying the requisite linker extensions, we generated compound 8, which exhibited single digit nanomolar enzymatic and sub-micromolar cellular inhibitory potency for MAT2A.


Assuntos
Metionina Adenosiltransferase , Neoplasias , Humanos , Sítio Alostérico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/metabolismo , Mutação , S-Adenosilmetionina/metabolismo
19.
Inorg Chem ; 63(4): 1816-1827, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38232749

RESUMO

A novel doubly interpenetrated indium-organic framework of 1 has been assembled by In3+ ions and highly conjugated biquinoline carboxylate-based bitopic connectors (H2L). The isolated 1 exhibits an anionic framework possessing channel-type apertures repleted with exposed quinoline N atoms and carboxyl O atoms. Owing to the unique architecture, 1 displays a durable photoluminescence effect and fluorescence quenching sensing toward CrO42-, Cr2O72-, and Cu2+ ions with reliable selectivity and anti-interference properties, fairly high detection sensitivity, and rather low detection limits. Ligand-to-ligand charge transition (LLCT) was identified as the essential cause of luminescence by modeling the ground state and excited states of 1 using DFT and TD-DFT. In addition, the negatively charged framework has the ability to rapidly capture single cationic MB, BR14, or BY24 and their mixture, including the talent to trap MB from the (MB + MO) system with high selectivity. Moreover, intrinsic light absorption capacity and band structure feature endow 1 with effective photocatalytic decomposition ability toward reactive dyes RR2 and RB13 under ultraviolet light. Notably, after further polishing the band structure state of 1 by constructing the S-scheme heterojunction of In2S3/1, highly efficient photocatalytic detoxification of Cr(VI) and degradation of reactive dyes have been fully achieved under visible light. This finding may open a new avenue for designing novel multifunctional MOF-based platforms to address some intractable environmental issues, i.e., detection of heavy metal ions, physical capture of pony-sized dyes, and photochemical decontamination of ultrastubborn reactive dyes and highly toxic Cr(VI) ions from water.

20.
J Orthop Surg Res ; 19(1): 14, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167107

RESUMO

BACKGROUND: Concerns have been raised regarding the impact of preoperative intravenous dexamethasone on postoperative glycemic control in diabetic patients undergoing total joint arthroplasty (TJA). This study aimed to determine relationships between preoperative different dexamethasone regimens and postoperative fasting blood glucose (FBG), as well as to identify risk factors for postoperative FBG ≥ 200 mg/dl in diabetic patients undergoing TJA. METHODS: This retrospective study included 1216 diabetic patients undergoing TJA and categorized into group A (dexamethasone = 0 mg), group B (dexamethasone = 5 mg), and group C (dexamethasone = 10 mg). All dexamethasone was administered before skin incision. FBG levels were monitored until postoperative day (POD) 3. Analyses were conducted for periprosthetic joint infection (PJI) and wound complications during 90 days postoperatively. And the risk factors for postoperative FBG ≥ 200 mg/dl were identified. RESULTS: Preoperative dexamethasone administration resulted in a transiently higher FBG on POD 0 and POD 1 (all P < 0.001). However, no differences were observed on POD 2 (P = 0.583) and POD 3 (P = 0.131) among three groups. While preoperative dexamethasone led to an increase in postoperative mean FBG and postoperative maximum FBG (all P < 0.001), no differences were found in wound complications (P = 0.548) and PJI (P = 1.000). Increased HbA1c and preoperative high FBG, but not preoperative dexamethasone, were identified as risk factors for postoperative FBG ≥ 200 mg/dl. Preoperative HbA1c level of ≥ 7.15% was associated with an elevated risk of postoperative FBG ≥ 200 mg/dl. CONCLUSIONS: Although preoperative intravenous administration of 5 mg or 10 mg dexamethasone in diabetic patients showed transient effects on postoperative FBG after TJA, no differences were found in the rates of PJI and wound complications during 90 days postoperatively. Notably, patients with a preoperative HbA1c level of ≥ 7.15% and elevated preoperative FBG may encountered postoperative FBG ≥ 200 mg/dl.


Assuntos
Artrite Infecciosa , Artroplastia de Quadril , Artroplastia do Joelho , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/cirurgia , Estudos Retrospectivos , Hemoglobinas Glicadas , Controle Glicêmico , Artroplastia do Joelho/efeitos adversos , Fatores de Risco , Artroplastia de Quadril/efeitos adversos , Artrite Infecciosa/etiologia , Dexametasona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...